3.6.18 \(\int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [518]

Optimal. Leaf size=247 \[ \frac {a^{5/2} (200 A+163 B) \text {ArcSin}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{64 d}+\frac {a^3 (104 A+95 B) \sin (c+d x)}{96 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^2 (8 A+11 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{24 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{4 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^3 (200 A+163 B) \sin (c+d x)}{64 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \]

[Out]

1/4*a*B*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+1/96*a^3*(104*A+95*B)*sin(d*x+c)/d/sec(d*x+c)^(3/
2)/(a+a*cos(d*x+c))^(1/2)+1/24*a^2*(8*A+11*B)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d/sec(d*x+c)^(3/2)+1/64*a^3*(2
00*A+163*B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)+1/64*a^(5/2)*(200*A+163*B)*arcsin(sin(d*x+c)*
a^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.47, antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3040, 3055, 3060, 2849, 2853, 222} \begin {gather*} \frac {a^{5/2} (200 A+163 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {ArcSin}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{64 d}+\frac {a^3 (104 A+95 B) \sin (c+d x)}{96 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {a^3 (200 A+163 B) \sin (c+d x)}{64 d \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {a^2 (8 A+11 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{24 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a B \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{4 d \sec ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(a^(5/2)*(200*A + 163*B)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c
 + d*x]])/(64*d) + (a^3*(104*A + 95*B)*Sin[c + d*x])/(96*d*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(3/2)) + (a^2
*(8*A + 11*B)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(24*d*Sec[c + d*x]^(3/2)) + (a*B*(a + a*Cos[c + d*x])^(3/
2)*Sin[c + d*x])/(4*d*Sec[c + d*x]^(3/2)) + (a^3*(200*A + 163*B)*Sin[c + d*x])/(64*d*Sqrt[a + a*Cos[c + d*x]]*
Sqrt[Sec[c + d*x]])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2849

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[2*n*((b*c + a*d)
/(b*(2*n + 1))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 3040

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Sin[e + f*x])^m*((
c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3055

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x
])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*
x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))
*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx\\ &=\frac {a B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{4 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{4} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \left (\frac {1}{2} a (8 A+3 B)+\frac {1}{2} a (8 A+11 B) \cos (c+d x)\right ) \, dx\\ &=\frac {a^2 (8 A+11 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{24 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{4 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{12} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \left (\frac {3}{4} a^2 (24 A+17 B)+\frac {1}{4} a^2 (104 A+95 B) \cos (c+d x)\right ) \, dx\\ &=\frac {a^3 (104 A+95 B) \sin (c+d x)}{96 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^2 (8 A+11 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{24 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{4 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{64} \left (a^2 (200 A+163 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \, dx\\ &=\frac {a^3 (104 A+95 B) \sin (c+d x)}{96 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^2 (8 A+11 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{24 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{4 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^3 (200 A+163 B) \sin (c+d x)}{64 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {1}{128} \left (a^2 (200 A+163 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {a^3 (104 A+95 B) \sin (c+d x)}{96 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^2 (8 A+11 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{24 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{4 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^3 (200 A+163 B) \sin (c+d x)}{64 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}-\frac {\left (a^2 (200 A+163 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{64 d}\\ &=\frac {a^{5/2} (200 A+163 B) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{64 d}+\frac {a^3 (104 A+95 B) \sin (c+d x)}{96 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^2 (8 A+11 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{24 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a B (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{4 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^3 (200 A+163 B) \sin (c+d x)}{64 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.02, size = 159, normalized size = 0.64 \begin {gather*} \frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (3 \sqrt {2} (200 A+163 B) \text {ArcSin}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}+(632 A+581 B+(272 A+362 B) \cos (c+d x)+4 (8 A+23 B) \cos (2 (c+d x))+12 B \cos (3 (c+d x))) \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{384 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(3*Sqrt[2]*(200*A + 163*B)*ArcSin[Sqrt[2]*
Sin[(c + d*x)/2]]*Sqrt[Cos[c + d*x]] + (632*A + 581*B + (272*A + 362*B)*Cos[c + d*x] + 4*(8*A + 23*B)*Cos[2*(c
 + d*x)] + 12*B*Cos[3*(c + d*x)])*(-Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2])))/(384*d)

________________________________________________________________________________________

Maple [A]
time = 0.39, size = 383, normalized size = 1.55

method result size
default \(\frac {\left (-1+\cos \left (d x +c \right )\right )^{2} \left (48 B \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{3}\left (d x +c \right )\right )+64 A \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+184 B \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )+272 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+326 B \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+600 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+489 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+600 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )+489 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right ) \cos \left (d x +c \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a^{2}}{192 d \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )^{4}}\) \(383\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/192/d*(-1+cos(d*x+c))^2*(48*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^3+64*A*sin(d*x+c)*cos(
d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+184*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+272
*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)+326*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
cos(d*x+c)+600*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+489*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+
c)+600*A*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))+489*B*arctan(sin(d*x+c)*(cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)/cos(d*x+c)))*cos(d*x+c)*(a*(1+cos(d*x+c)))^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/(1/cos
(d*x+c))^(1/2)/sin(d*x+c)^4*a^2

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 9390 vs. \(2 (211) = 422\).
time = 1.11, size = 9390, normalized size = 38.02 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/768*(8*(4*(a^2*cos(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d
*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(3*d*x + 3*c) - (a^2*cos(3*d*x + 3*c) - a^2)*sin(3/2*arctan2(sin(2/3*ar
ctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*(cos(2
/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2
*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*sqrt(a) + 30*(cos(2/3*arctan2(sin(3*d*x + 3*c
), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x
 + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*((a^2*sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 5*a^2*sin(
1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
+ 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (a^2*cos(2/3*arctan2(sin(3*d*x + 3*c),
cos(3*d*x + 3*c))) + 3*a^2*cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 4*a^2)*sin(1/2*arctan2(sin(2
/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*s
qrt(a) + 75*(a^2*arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arct
an2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))
 + 1))*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*
c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), c
os(3*d*x + 3*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arct
an2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))),
 cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*
c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), c
os(3*d*x + 3*c))) + 1))) + 1) - a^2*arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3
*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^
(1/4)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c),
 cos(3*d*x + 3*c))) + 1))*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3
*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(
sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3
*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^
(1/4)*(cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c),
cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3
*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(
sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))) - 1) - a^2*arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*
d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(
sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(
1/4)*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), c
os(3*d*x + 3*c))) + 1)) + 1) + a^2*arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1
/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), co
s(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x +
3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2
(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) +
1)) - 1))*sqrt(a))*A + (2*(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x
+ 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(3/4)*((3*a^2*cos(4
*d*x + 4*c)^2*sin(4*d*x + 4*c) + 3*a^2*sin(4*d*...

________________________________________________________________________________________

Fricas [A]
time = 0.44, size = 183, normalized size = 0.74 \begin {gather*} -\frac {3 \, {\left ({\left (200 \, A + 163 \, B\right )} a^{2} \cos \left (d x + c\right ) + {\left (200 \, A + 163 \, B\right )} a^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {{\left (48 \, B a^{2} \cos \left (d x + c\right )^{4} + 8 \, {\left (8 \, A + 23 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} + 2 \, {\left (136 \, A + 163 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \, {\left (200 \, A + 163 \, B\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{192 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/192*(3*((200*A + 163*B)*a^2*cos(d*x + c) + (200*A + 163*B)*a^2)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqr
t(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - (48*B*a^2*cos(d*x + c)^4 + 8*(8*A + 23*B)*a^2*cos(d*x + c)^3 + 2*(13
6*A + 163*B)*a^2*cos(d*x + c)^2 + 3*(200*A + 163*B)*a^2*cos(d*x + c))*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sq
rt(cos(d*x + c)))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^(5/2)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(5/2))/(1/cos(c + d*x))^(1/2),x)

[Out]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(5/2))/(1/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________